

Next Generation I/O Panel HEC-FSIO 2011

Dries Kimpe < dkimpe@mcs.anl.gov>
Argonne National Laboratory

Current I/O Software Stack

High-Level I/O Library

maps application abstractions onto storage abstractions — and provides data portability.

HDF5, Parallel netCDF, ADIOS

I/O Forwarding

bridges between app. tasks_ and storage system and provides aggregation for uncoordinated I/O.

IBM ciod, IOFSL

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O Hardware

I/O Middleware

organizes accesses from many processes, especially those using collective I/O.

MPI-IO

Parallel File System

maintains logical space and provides efficient access to data.

PVFS, PanFS, GPFS, Lustre

I/O Hardware and Software on Blue Gene/P

High-level I/O libraries

execute on compute nodes, mapping application abstractions into flat files, and encoding data in portable formats.

I/O middleware manages collective access to storage. I/O forwarding software runs on compute and gateway nodes, bridges networks, and provides aggregation of independent I/O.

Parallel file system

code runs on gateway and storage nodes, maintains logical storage space and enables efficient access to data.

Drive management

software or firmware executes on storage controllers, organizes individual drives, detects drive failures, and reconstructs lost data.

Compute nodes

40,960 Quad core PowerPC 450 nodes with 2 Gbytes of RAM each

Gateway nodes

640 Quad core PowerPC 450 nodes with 2 Gbytes of RAM each

Commodity network

900+ port 10 Gigabit Ethernet Myricom switch complex

Storage nodes

I 36 two dual core
Opteron servers with
8 Gbytes of RAM each

Enterprise storage

I 7 DataDirect S2A9900 controller pairs with 480 I Tbyte drives and 8 InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Evolutionary or Revolutionary Storage?

- I like a revolution as much as the next guy, but in HPC I/O, change is slow
 - Unlike companies such as Amazon (S3), Google (bigtable), Facebook (haystack)
 - Working around file system issues is easier than fixing them
 - We need a solution now; New file systems won't be ready for a couple of years...
 - HPC Community is very good at resisting assimilation!
- Can be a bit of both:
 - build high level libraries on top of revolutionary stack
 - MPI-IO (collective open, consistency)
 - Change semantics to what applications require, not what POSIX requires
 - PLFS, Glean,...
- How will parallel file systems look in 10 years?
 - The same!

Evolution: Storage Hardware

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O Hardware

Storage Media

Capacity: Shingled writing

Latency: Solid State Drives

Phase Change Memory

– Hybrid drives??

Network

Evolution: Parallel File Systems

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

- Faster Metadata
 - Multiple metadata servers
 - Giga+
 - Benefit from Solid State
- Relaxed consistency semantics
 - Lustre group locks
 - Maybe leave it up to middleware?
- Expose data locality
- Don't force the file system to do the dirty work
 - Cfr. Hidden query operations(O_EXCLUSIVE, database-dir, ...)

Evolution: I/O Forwarding

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

- Distributed Caching
 - Reduces alignment, locking issues
- Node local storage:
 - Data Staging & Write Buffering
 - In-machine scratch (analysis)
- Compression & Deduplication
- New operations
 - Distributed append & return offset
- Resiliency: Fault Tolerant Backplane
- I/O Scheduling
 - QoS
 - Server Directed I/O
- Rework I/O for parallel file system
 - Very performance sensitive
 - Aggregation

Evolution

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

- New domain specific libraries needed
 - Lots of interesting work
- Exploit node local storage?
 - Write buffering, read-ahead
 - Checkpoint draining
- Free cores?
- I/O middleware needs to evolve
 - High level libraries are more complex;
 Middleware cannot be in the way
 - Interface issues (posix HPC extensions)
- Tuning: automatic or even sysadmin
 - Why don't we have this?
- Data Analysis
 - In situ

Evolution: Applications

Application

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

- What? Modify my application?
 - Ideally, yes.
 - Maybe if willing to accept ugly hacks.
- Why?
 - More information
 - Modern Interfaces, HLL libraries
 - Rules change (memory, C&C ratio)

Summary: Evolution, not Revolution

Questions:

- Why do most improvements remain just on paper?
 (or how to speed up evolution)
- How to encourage adoption of existing software and tools?
 - Need to be more user friendly?
- Do we need to bring out our I/O stack as a single monolithic block?
 - Encourage fixing where fixes are needed
 - Make it easier for the user to chose the right HL library
- When will we see Giga+ and PLFS techniques in file systems?
 - Parallel file system evolution is very slow

Panel Questions

- Will storage be more hierarchical?
 - Yes
- How should we present it to the user?
 - We don't. (note: user = ?)
- Lessons from cloud storage?
 - Different goals
 - If any: see below
- Should we consider record based I/O?
 - Evolution is going that way
- Crazy idea: we need an iron hand
 - No longer tolerate misuse/abuse/ignorance
 - But in return support our software
 - Lower layers are root-only

Acknowledgements

- DOE Office of Advanced Scientific Computing Research (ASCR)
- HEC FSIO Organizers
- Community